Page Interaction
Crawl4AI provides powerful features for interacting with dynamic webpages, handling JavaScript execution, and managing page events.
JavaScript Execution
Basic Execution
from crawl4ai.async_configs import CrawlerRunConfig
# Single JavaScript command
config = CrawlerRunConfig(
js_code="window.scrollTo(0, document.body.scrollHeight);"
)
result = await crawler.arun(url="https://example.com", config=config)
# Multiple commands
js_commands = [
"window.scrollTo(0, document.body.scrollHeight);",
"document.querySelector('.load-more').click();",
"document.querySelector('#consent-button').click();"
]
config = CrawlerRunConfig(js_code=js_commands)
result = await crawler.arun(url="https://example.com", config=config)
Wait Conditions
CSS-Based Waiting
Wait for elements to appear:
config = CrawlerRunConfig(wait_for="css:.dynamic-content") # Wait for element with class 'dynamic-content'
result = await crawler.arun(url="https://example.com", config=config)
JavaScript-Based Waiting
Wait for custom conditions:
# Wait for number of elements
wait_condition = """() => {
return document.querySelectorAll('.item').length > 10;
}"""
config = CrawlerRunConfig(wait_for=f"js:{wait_condition}")
result = await crawler.arun(url="https://example.com", config=config)
# Wait for dynamic content to load
wait_for_content = """() => {
const content = document.querySelector('.content');
return content && content.innerText.length > 100;
}"""
config = CrawlerRunConfig(wait_for=f"js:{wait_for_content}")
result = await crawler.arun(url="https://example.com", config=config)
Handling Dynamic Content
Load More Content
Handle infinite scroll or load more buttons:
config = CrawlerRunConfig(
js_code=[
"window.scrollTo(0, document.body.scrollHeight);", # Scroll to bottom
"const loadMore = document.querySelector('.load-more'); if(loadMore) loadMore.click();" # Click load more
],
wait_for="js:() => document.querySelectorAll('.item').length > previousCount" # Wait for new content
)
result = await crawler.arun(url="https://example.com", config=config)
Form Interaction
Handle forms and inputs:
js_form_interaction = """
document.querySelector('#search').value = 'search term'; // Fill form fields
document.querySelector('form').submit(); // Submit form
"""
config = CrawlerRunConfig(
js_code=js_form_interaction,
wait_for="css:.results" # Wait for results to load
)
result = await crawler.arun(url="https://example.com", config=config)
Timing Control
Delays and Timeouts
Control timing of interactions:
config = CrawlerRunConfig(
page_timeout=60000, # Page load timeout (ms)
delay_before_return_html=2.0 # Wait before capturing content
)
result = await crawler.arun(url="https://example.com", config=config)
Complex Interactions Example
Here's an example of handling a dynamic page with multiple interactions:
from crawl4ai.async_configs import BrowserConfig, CrawlerRunConfig
async def crawl_dynamic_content():
async with AsyncWebCrawler() as crawler:
# Initial page load
config = CrawlerRunConfig(
js_code="document.querySelector('.cookie-accept')?.click();", # Handle cookie consent
wait_for="css:.main-content"
)
result = await crawler.arun(url="https://example.com", config=config)
# Load more content
session_id = "dynamic_session" # Keep session for multiple interactions
for page in range(3): # Load 3 pages of content
config = CrawlerRunConfig(
session_id=session_id,
js_code=[
"window.scrollTo(0, document.body.scrollHeight);", # Scroll to bottom
"window.previousCount = document.querySelectorAll('.item').length;", # Store item count
"document.querySelector('.load-more')?.click();" # Click load more
],
wait_for="""() => {
const currentCount = document.querySelectorAll('.item').length;
return currentCount > window.previousCount;
}""",
js_only=(page > 0) # Execute JS without reloading page for subsequent interactions
)
result = await crawler.arun(url="https://example.com", config=config)
print(f"Page {page + 1} items:", len(result.cleaned_html))
# Clean up session
await crawler.crawler_strategy.kill_session(session_id)
Using with Extraction Strategies
Combine page interaction with structured extraction:
from crawl4ai.extraction_strategy import JsonCssExtractionStrategy, LLMExtractionStrategy
from crawl4ai.async_configs import CrawlerRunConfig
# Pattern-based extraction after interaction
schema = {
"name": "Dynamic Items",
"baseSelector": ".item",
"fields": [
{"name": "title", "selector": "h2", "type": "text"},
{"name": "description", "selector": ".desc", "type": "text"}
]
}
config = CrawlerRunConfig(
js_code="window.scrollTo(0, document.body.scrollHeight);",
wait_for="css:.item:nth-child(10)", # Wait for 10 items
extraction_strategy=JsonCssExtractionStrategy(schema)
)
result = await crawler.arun(url="https://example.com", config=config)
# Or use LLM to analyze dynamic content
class ContentAnalysis(BaseModel):
topics: List[str]
summary: str
config = CrawlerRunConfig(
js_code="document.querySelector('.show-more').click();",
wait_for="css:.full-content",
extraction_strategy=LLMExtractionStrategy(
provider="ollama/nemotron",
schema=ContentAnalysis.schema(),
instruction="Analyze the full content"
)
)
result = await crawler.arun(url="https://example.com", config=config)