CrawlResult
The CrawlResult
class represents the result of a web crawling operation. It provides access to various forms of extracted content and metadata from the crawled webpage.
Class Definition
class CrawlResult(BaseModel):
"""Result of a web crawling operation."""
# Basic Information
url: str # Crawled URL
success: bool # Whether crawl succeeded
status_code: Optional[int] = None # HTTP status code
error_message: Optional[str] = None # Error message if failed
# Content
html: str # Raw HTML content
cleaned_html: Optional[str] = None # Cleaned HTML
fit_html: Optional[str] = None # Most relevant HTML content
markdown: Optional[str] = None # HTML converted to markdown
fit_markdown: Optional[str] = None # Most relevant markdown content
downloaded_files: Optional[List[str]] = None # Downloaded files
# Extracted Data
extracted_content: Optional[str] = None # Content from extraction strategy
media: Dict[str, List[Dict]] = {} # Extracted media information
links: Dict[str, List[Dict]] = {} # Extracted links
metadata: Optional[dict] = None # Page metadata
# Additional Data
screenshot: Optional[str] = None # Base64 encoded screenshot
session_id: Optional[str] = None # Session identifier
response_headers: Optional[dict] = None # HTTP response headers
Properties and Their Data Structures
Basic Information
# Access basic information
result = await crawler.arun(url="https://example.com")
print(result.url) # "https://example.com"
print(result.success) # True/False
print(result.status_code) # 200, 404, etc.
print(result.error_message) # Error details if failed
Content Properties
HTML Content
# Raw HTML
html_content = result.html
# Cleaned HTML (removed ads, popups, etc.)
clean_content = result.cleaned_html
# Most relevant HTML content
main_content = result.fit_html
Markdown Content
# Full markdown version
markdown_content = result.markdown
# Most relevant markdown content
main_content = result.fit_markdown
Media Content
The media dictionary contains organized media elements:
# Structure
media = {
"images": [
{
"src": str, # Image URL
"alt": str, # Alt text
"desc": str, # Contextual description
"score": float, # Relevance score (0-10)
"type": str, # "image"
"width": int, # Image width (if available)
"height": int, # Image height (if available)
"context": str, # Surrounding text
"lazy": bool # Whether image was lazy-loaded
}
],
"videos": [
{
"src": str, # Video URL
"type": str, # "video"
"title": str, # Video title
"poster": str, # Thumbnail URL
"duration": str, # Video duration
"description": str # Video description
}
],
"audios": [
{
"src": str, # Audio URL
"type": str, # "audio"
"title": str, # Audio title
"duration": str, # Audio duration
"description": str # Audio description
}
]
}
# Example usage
for image in result.media["images"]:
if image["score"] > 5: # High-relevance images
print(f"High-quality image: {image['src']}")
print(f"Context: {image['context']}")
Link Analysis
The links dictionary organizes discovered links:
# Structure
links = {
"internal": [
{
"href": str, # URL
"text": str, # Link text
"title": str, # Title attribute
"type": str, # Link type (nav, content, etc.)
"context": str, # Surrounding text
"score": float # Relevance score
}
],
"external": [
{
"href": str, # External URL
"text": str, # Link text
"title": str, # Title attribute
"domain": str, # Domain name
"type": str, # Link type
"context": str # Surrounding text
}
]
}
# Example usage
for link in result.links["internal"]:
print(f"Internal link: {link['href']}")
print(f"Context: {link['context']}")
Metadata
The metadata dictionary contains page information:
# Structure
metadata = {
"title": str, # Page title
"description": str, # Meta description
"keywords": List[str], # Meta keywords
"author": str, # Author information
"published_date": str, # Publication date
"modified_date": str, # Last modified date
"language": str, # Page language
"canonical_url": str, # Canonical URL
"og_data": Dict, # Open Graph data
"twitter_data": Dict # Twitter card data
}
# Example usage
if result.metadata:
print(f"Title: {result.metadata['title']}")
print(f"Author: {result.metadata.get('author', 'Unknown')}")
Extracted Content
Content from extraction strategies:
# For LLM or CSS extraction strategies
if result.extracted_content:
structured_data = json.loads(result.extracted_content)
print(structured_data)
Screenshot
Base64 encoded screenshot:
# Save screenshot if available
if result.screenshot:
import base64
# Decode and save
with open("screenshot.png", "wb") as f:
f.write(base64.b64decode(result.screenshot))
Usage Examples
Basic Content Access
async with AsyncWebCrawler() as crawler:
result = await crawler.arun(url="https://example.com")
if result.success:
# Get clean content
print(result.fit_markdown)
# Process images
for image in result.media["images"]:
if image["score"] > 7:
print(f"High-quality image: {image['src']}")
Complete Data Processing
async def process_webpage(url: str) -> Dict:
async with AsyncWebCrawler() as crawler:
result = await crawler.arun(url=url)
if not result.success:
raise Exception(f"Crawl failed: {result.error_message}")
return {
"content": result.fit_markdown,
"images": [
img for img in result.media["images"]
if img["score"] > 5
],
"internal_links": [
link["href"] for link in result.links["internal"]
],
"metadata": result.metadata,
"status": result.status_code
}
Error Handling
async def safe_crawl(url: str) -> Dict:
async with AsyncWebCrawler() as crawler:
try:
result = await crawler.arun(url=url)
if not result.success:
return {
"success": False,
"error": result.error_message,
"status": result.status_code
}
return {
"success": True,
"content": result.fit_markdown,
"status": result.status_code
}
except Exception as e:
return {
"success": False,
"error": str(e),
"status": None
}
Best Practices
-
Always Check Success
-
Use fit_markdown for Articles
-
Filter Media by Score
-
Handle Missing Data