Content Processing
Crawl4AI provides powerful content processing capabilities that help you extract clean, relevant content from web pages. This guide covers content cleaning, media handling, link analysis, and metadata extraction.
Media Processing
Crawl4AI provides comprehensive media extraction and analysis capabilities. It automatically detects and processes various types of media elements while maintaining their context and relevance.
Image Processing
The library handles various image scenarios, including: - Regular images - Lazy-loaded images - Background images - Responsive images - Image metadata and context
from crawl4ai.async_configs import CrawlerRunConfig
config = CrawlerRunConfig()
result = await crawler.arun(url="https://example.com", config=config)
for image in result.media["images"]:
# Each image includes rich metadata
print(f"Source: {image['src']}")
print(f"Alt text: {image['alt']}")
print(f"Description: {image['desc']}")
print(f"Context: {image['context']}") # Surrounding text
print(f"Relevance score: {image['score']}") # 0-10 score
Handling Lazy-Loaded Content
Crawl4AI already handles lazy loading for media elements. You can customize the wait time for lazy-loaded content with CrawlerRunConfig
:
config = CrawlerRunConfig(
wait_for="css:img[data-src]", # Wait for lazy images
delay_before_return_html=2.0 # Additional wait time
)
result = await crawler.arun(url="https://example.com", config=config)
Video and Audio Content
The library extracts video and audio elements with their metadata:
from crawl4ai.async_configs import CrawlerRunConfig
config = CrawlerRunConfig()
result = await crawler.arun(url="https://example.com", config=config)
# Process videos
for video in result.media["videos"]:
print(f"Video source: {video['src']}")
print(f"Type: {video['type']}")
print(f"Duration: {video.get('duration')}")
print(f"Thumbnail: {video.get('poster')}")
# Process audio
for audio in result.media["audios"]:
print(f"Audio source: {audio['src']}")
print(f"Type: {audio['type']}")
print(f"Duration: {audio.get('duration')}")
Link Analysis
Crawl4AI provides sophisticated link analysis capabilities, helping you understand the relationship between pages and identify important navigation patterns.
Link Classification
The library automatically categorizes links into: - Internal links (same domain) - External links (different domains) - Social media links - Navigation links - Content links
from crawl4ai.async_configs import CrawlerRunConfig
config = CrawlerRunConfig()
result = await crawler.arun(url="https://example.com", config=config)
# Analyze internal links
for link in result.links["internal"]:
print(f"Internal: {link['href']}")
print(f"Link text: {link['text']}")
print(f"Context: {link['context']}") # Surrounding text
print(f"Type: {link['type']}") # nav, content, etc.
# Analyze external links
for link in result.links["external"]:
print(f"External: {link['href']}")
print(f"Domain: {link['domain']}")
print(f"Type: {link['type']}")
Smart Link Filtering
Control which links are included in the results with CrawlerRunConfig
:
config = CrawlerRunConfig(
exclude_external_links=True, # Remove external links
exclude_social_media_links=True, # Remove social media links
exclude_social_media_domains=[ # Custom social media domains
"facebook.com", "twitter.com", "instagram.com"
],
exclude_domains=["ads.example.com"] # Exclude specific domains
)
result = await crawler.arun(url="https://example.com", config=config)
Metadata Extraction
Crawl4AI automatically extracts and processes page metadata, providing valuable information about the content:
from crawl4ai.async_configs import CrawlerRunConfig
config = CrawlerRunConfig()
result = await crawler.arun(url="https://example.com", config=config)
metadata = result.metadata
print(f"Title: {metadata['title']}")
print(f"Description: {metadata['description']}")
print(f"Keywords: {metadata['keywords']}")
print(f"Author: {metadata['author']}")
print(f"Published Date: {metadata['published_date']}")
print(f"Modified Date: {metadata['modified_date']}")
print(f"Language: {metadata['language']}")